

 Navigation

 	
 index

 	
 next |

 	sanpera 0.1.0 documentation

sanpera documentation

sanpera is an image editing and manipulation library for Python.

Table of contents

	Overview
	Warning

	Compatibility

	Installation

	Regarding ImageMagick

	Name

	Links

	Introduction
	Usage

	Images versus frames

	Geometry

	Reading and writing

	Resizing

	Cropping

Indices and tables

	Index

	Module Index

	Search Page

Links

	Homepage

	GitHub project page

	ImageMagick

 Copyright 2012, Eevee.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sanpera 0.1.0 documentation

Overview

Warning

ImageMagick is a complicated library with poor documentation and too many
warts. Additionally, the author’s C is a bit rusty. sanpera is thus
completely unreliable and may destroy your images, eat all your memory, and/or
burn your house down.

Patches and expertise are, of course, entirely welcome.

Compatibility

sanpera is known to work with Python 2.7. It probably works with earlier
versions of Python 2, and possibly works with Python 3.

Installation

sanpera requires Cython.

You will also need ImageMagick and its headers installed if you plan to get
very far.

Minimum versions are unclear; thusfar sanpera has only been built and used with
the latest versions of everything.

Regarding ImageMagick

There are several Python libraries, in varying states of completion and decay,
that wrap ImageMagick.

sanpera is explicitly not such a library. ImageMagick is considered an
implementation detail, and its design influences sanpera’s as little as
possible. sanpera actually goes to considerable lengths to subvert ImageMagick
features in many cases, where such features are awkward in Python, obscure and
surprising, inappropriate for a general-use library, or otherwise deemed
undesireable.

ImageMagick was chosen for its ubiquity, fairly broad feature set, and
familiarity. GraphicsMagick was briefly evaluated, and even powered the
initial prototype, but it has languished considerably since it was forked from
ImageMagick. Other candidates for an underlying library were either too
cumbersome, too underpowered, or tragically unknown to the author at the time.

Name

As it’s a library and not a program, the name “sanpera” is written in
lowercase.

“Sanpera” is the Hindi term for a snake charmer—i.e., one who might manipulate
Python with magick.

Links

	Project homepage [http://eevee.github.com/sanpera/]

	GitHub repository [https://github.com/eevee/sanpera]

	ImageMagick [http://www.imagemagick.org/]

 Copyright 2012, Eevee.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	sanpera 0.1.0 documentation

Introduction

Usage

ImageMagick has “Usage” documentation [http://www.imagemagick.org/Usage/] which demonstrates hundreds of specific
operations as performed by the convert utility. Part of sanpera’s test
suite is built around these demos: a convert command is rewritten into
Python, both are executed, and the results are compared. If you’re already
familiar with convert, this is a fast way to get up to speed: just find a
Usage test that does what you want and look at the equivalent Python. Usage
tests are kept in sanpera/tests/im_usage.

Images versus frames

As far as sanpera is concerned, and unlike many other libraries, images and
frames are separate concepts.

An image is a collection of metadata and a stack of zero or more frames.
Each frame is a rectangular grid of actual pixel data. High-level operations
such as converting between image formats tend to be done on an image; custom
effects, drawing, and pixel inspection must be done on individual frames.

The distinction removes API ambiguity between single-frame and multi-frame
images, and helps avoid some common pitfalls when programs written for
single-frame images are used for multi-frame images.

Additionally, destructive image operations tend to return new image objects,
whereas destructive frame operations cheerfully operate in-place.

Images are represented by the Image class. Frames are represented by the
ImageFrame class. An Image acts as a sequence of frames, but the
interface is somewhat hindered to prevent two images from claiming to own the
same frame at the same time.

Geometry

sanpera has a small set of geometry-related utility classes. Properties of
images and frames, such as size, return Size objects.

For convenience’s sake, any method or function anywhere in sanpera that
expects a geometry object will also accept a plain tuple; for example, you may
say img.resized((100, 100)) rather than img.resized(Size(100, 100)).
Don’t forget the extra pair of parentheses!

Reading and writing

Read from a file:

img = Image.read('foo.png')

Or from a string:

img = Image.from_buffer(pngdata)

Similarly, write to a file:

img.write('foo.png', format='png')

If the image was read from a file or string, it "remembers" its original
format, and the format can be omitted:
img.write('foo.png')

Or a string:

buf = img.to_buffer(format='png')

Same thing applies
buf = img.to_buffer()

Images cannot be read from or written to arbitrary file-like objects; the
underlying library simply doesn’t support chunked i/o. The best sanpera could
do is read everything into a single buffer and write it out all at once, which
deceptively implies some optimization where there is none.

You may of course do this yourself:

img = Image.from_buffer(filelike.read())

Note that ImageMagick’s special filename syntax (miff:foobar[1] and the
like) is not supported by the above methods, as it leads to surprising
behavior for particular filenames and leaves the developer to sort the mess
out. You can still use it explicitly:

img = Image.from_magick('png:badly_named_file.gif')

If you just want to use the built-in patterns or gradients, there are easier
ways.

Resizing

img = img.resized((100, 100))

Cropping

img = img.cropped(Size(40, 40).at((30, 30)))

 Copyright 2012, Eevee.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	sanpera 0.1.0 documentation

Index

 Copyright 2012, Eevee.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		sanpera 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eevee.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

